Click on the links for resources on each topic.
2010-J-2:

- Bonding in $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{CH}_{2} \mathrm{O}$

2010-J-3:

- Bonding in $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{CH}_{2} \mathrm{O}$

2010-J-4:

2010-J-5:

- Nuclear and Radiation Chemistry
- Types of Intermolecular Forces

2010-J-6:

- Lewis Structures
- VSEPR

2010-J-7:

- Thermochemistry

2010-J-8:

- Chemical Equilibrium

2010-J-9:

- Chemical Equilibrium

2010-J-10:

- First and Second Law of Thermodynamics

2010-J-11:

- First and Second Law of Thermodynamics
- Band Theory - MO in Solids
- Polar Bonds
- lonic Bonding
- Lewis Structures

2010-J-12:

- Electrochemistry
- Electrolytic Cells

CONFIDENTIAL

FIRST SEMESTER EXAMINATION

JUNE 2010
TIME ALLOWED: THREE HOURS
GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY		SID	
NAME		NUMBER	
OTHER		TABLE	
NAMES		NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with $\mathrm{a} \bullet$.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Page 24 is for rough working only.

OFFICIAL USE ONLY

Page	Marks			Marker
	Max	Gained		
12	4			
13	7			
14	11			
15	6			
16	6			
17	3			
18	5			
19	7			
20	4			
21	5			
22	7			
23	4			
Total	69			

- The "Great Comet of 1881 " was discovered by Tebbutt from his observatory at

This emission system of CN is known as the "violet system", and results from a radical returning to the ground state as an electron makes a transition from a σ orbital to a σ^{*} orbital. The "red system" of CN results from a radical returning to the ground state as an electron makes a transition from a σ orbital to a π orbital.
On the diagram below, indicate the orbital occupancy, using arrow notation, of the upper electronic states of the "violet" and "red" systems of CN. Also indicate how the excited electron relaxes when the radical emits light (use a curved arrow).

THIS QUESTION CONTINUES ON THE NEXT PAGE.

Explain in terms of bond order why the upper state of the violet system exhibits a shorter bond length ($1.15 \AA$) than the ground state ($1.17 \AA$).

Also indicated in Huggin's spectrum are the Fraunhofer absorption features labelled K, H and G, which arise from calcium. Explain the appearance of these features. (Hint: they would also appear in the spectrum of moonlight.)

The Fraunhofer feature labelled ' h ' is due to atomic hydrogen. What is the electronic transition responsible for this absorption feature? (Hint: one of the energy levels involved is $n=2$.)

- Thorium is a naturally occurring metal estimated to be about three to four times more abundant than uranium in the Earth's crust. Naturally occurring thorium is composed

When struck by a neutron, an atom of ${ }^{233} \mathrm{U}$ can undergo α-decay generating 200 MeV of energy. What initial mass of thorium ${ }^{232} \mathrm{Th}$ would be required to provide $6 \times 10^{18} \mathrm{~J}$, Australia's energy needs for one year?
\square
${ }^{232} \mathrm{Th}$ also undergoes a $(n, 2 n)$ reaction to form ${ }^{231} \mathrm{Th}$, which subsequently decays to
${ }^{231} \mathrm{~Pa}$. This side reaction is a major contributor to the long term radiotoxicity of spent nuclear fuel. Calculate the activity (in Bq) of 1.0 g of each of these isotopes.

THIS QUESTION CONTINUES ON THE NEXT PAGE.

How long does it take 1.0 g of ${ }^{231} \mathrm{Th}$ to decay to the same activity as 1.0 g of ${ }^{232} \mathrm{Th}$?

Answer:

- Rationalise the order of the boiling points of the following liquids in terms of their intermolecular forces.

liquid	F_{2}	HCl	HBr	HI	Cl_{2}	HF	Br_{2}	I_{2}
b.p. $\left({ }^{\circ} \mathrm{C}\right)$	-188	-85	-67	-35	-34	20	59	184

- Toosendanin (pictured) is an ingredient from traditional Chinese medicine and is

Marks

Complete the table concerning the atoms a, b and c indicated by the arrows.

Selected atom	Number of σ-bonds associated with the selected atom	Geometry of σ-bonds about the selected atom
a		
b		
c		
c		

Comment on the actual bond angle exhibited by atom d as compared to electronically similar atoms elsewhere in the molecule. Is this epoxide group likely more or less reactive than an ether? Explain.

- Calcium chloride $(1.14 \mathrm{~g})$ is completely dissolved in 100.0 mL of water at $27.00^{\circ} \mathrm{C}$ in

Marks
3 a 'coffee cup' calorimeter. The temperature of the water after dissolution is $28.97^{\circ} \mathrm{C}$. Calculate the standard enthalpy of solution of $\mathrm{CaCl}_{2}\left(\right.$ in $\left.\mathrm{kJ} \mathrm{mol}^{-1}\right)$. The density of water at $27.0^{\circ} \mathrm{C}$ is $0.997 \mathrm{~g} \mathrm{~mL}^{-1}$ and its heat capacity is $4.184 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$. Ignore the heat capacity of the CaCl_{2}.

Answer:
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

- Ethanol is produced industrially by reacting ethylene with water according to the

Marks following equation.

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g}) \quad \Delta H^{\circ}=-47.8 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Equal masses of solid ethylene and water ice are introduced to a 1.00 L flask at 100 K . The flask is evacuated of air, sealed and heated to 600 K . When equilibrium is reached, the flask contains 0.098 mol of ethylene gas and the total pressure is 26.5 atm . What mass of ethylene was introduced to the flask originally?

Answer:
The same experiment is carried out in another flask, but with different initial masses of ethylene and ice. At equilibrium, this flask contains $5.81 \times 10^{-3} \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}$, $1.21 \times 10^{-2} \mathrm{~mol}$ of $\mathrm{C}_{2} \mathrm{H}_{4}$, and $6.33 \times 10^{-1} \mathrm{~mol}$ of ethanol. Calculate the concentration equilibrium constant, K_{c}, at 600 K .

Answer:
THIS QUESTION CONTINUES ON THE NEXT PAGE.
Page Total:

Calculate the partial pressure equilibrium constant, K_{p}, at 600 K .
\square
What is the standard entropy change ΔS° (in $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$) for the forward reaction at 600 K ?
\square
How will the yield of ethanol be affected by the following changes?
The volume of the flask is increased.
\square
The temperature is increased.
\square
The walls of the flask are cooled so that only liquid water condenses out.
\square
A catalyst is added.
\square

- Iron oxide that has been exposed to the atmosphere for any length of time will generally contain a mixture of magnetite, $\mathrm{Fe}_{2} \mathrm{O}_{3}$, and haematite, $\mathrm{Fe}_{3} \mathrm{O}_{4}$. This mixture can be converted to pure $\mathrm{Fe}_{3} \mathrm{O}_{4}$ by heating it under an excess of flowing hydrogen gas:

$$
3 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta H^{\circ}=-11.0 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

If 0.0364 kJ of heat is liberated during the conversion of a 7.18 g sample of iron oxide (consisting only of magnetite and haematite) to pure $\mathrm{Fe}_{3} \mathrm{O}_{4}$, what was the initial mass percentage of haematite in the sample?
\square Answer:
$\mathrm{Fe}_{3} \mathrm{O}_{4}$ can be further reduced to FeO under flowing hydrogen.

$$
\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{FeO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Based on the following table of thermodynamic data, what is the minimum temperature at which this would be a spontaneous reaction?

	Fe	$\mathrm{FeO}(\mathrm{s})$	$\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})$	$\mathrm{H}_{2}(\mathrm{~g})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta_{\mathrm{f}} H^{\circ}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$		-272	-1118		-242
$S^{\circ}\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$	27	61	146	131	189

Answer:

THIS QUESTION CONTINUES ON THE NEXT PAGE.

Would the resulting FeO be stable under those conditions, or would it be reduced further to Fe metal by the following reaction?

$$
\mathrm{FeO}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Explain, with calculations as appropriate.
\square
Describe the nature of the bonding in (i) FeO (s), (ii) $\mathrm{H}_{2}(\mathrm{~g})$ and (iii) $\mathrm{Fe}(\mathrm{s})$.

- A voltaic cell is set up at 298 K based on the following reaction

$$
\mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{Al}(\mathrm{~s}) \rightleftharpoons \mathrm{Cr}(\mathrm{~s})+\mathrm{Al}^{3+}(\mathrm{aq})
$$

Express the overall reaction in voltaic cell notation.
\square
Calculate the cell potential at 298 K when the concentration of $\mathrm{Cr}^{3+}(\mathrm{aq})$ is 0.213 M and the concentration of $\mathrm{Al}^{3+}(\mathrm{aq})$ is 0.078 M .
\square
Calculate the equilibrium constant at 298 K .
\square

- How long (in seconds) would it take for all the gold to be plated out of 55.0 mL of a $2.34 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ solution of $\mathrm{Au}^{3+}(\mathrm{aq})$, using a current of 0.75 A ?

- The aluminium-air battery, in which aluminium metal is oxidised to Al^{3+} and O_{2} is reduced to OH^{-}, is being considered as a power source in cars. Briefly compare the 4 relative merits of such a battery with those of a fuel cell for such applications.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

DATA SHEET

Physical constants

Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Permittivity of a vacuum, $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{e}=9.1094 \times 10^{-31} \mathrm{~kg}$
Mass of proton, $m_{p}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of neutron, $m_{\mathrm{n}}=1.6749 \times 10^{-27} \mathrm{~kg}$

Properties of matter
Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$
$1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
1 tonne $=10^{3} \mathrm{~kg}$
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{~W}=1 \mathrm{~J} \mathrm{~s}^{-1}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples
Multiple Prefix Symbol
10^{3} kilo k
$10^{6} \quad$ mega M
$10^{9} \quad$ giga $\quad G$

CHEM1901 - CHEMISTRY 1A (ADVANCED)

 CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)
Standard Reduction Potentials, E ${ }^{\circ}$

Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq})$	+1.72
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}$	+1.51
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})$	+1.50
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36
$\mathrm{O}_{2}+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	+1.23
$\mathrm{Pt}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pt}(\mathrm{s})$	+1.18
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$	+0.96
$\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}$	+0.96
$\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pd}(\mathrm{s})$	+0.92
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	$+0.80$
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	$+0.53$
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	$+0.34$
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.15
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$	0 (by definition)
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.04
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$	-0.13
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.24
$\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})$	-0.40
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.74
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$	-0.76
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	-0.83
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$	-2.36
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$	-2.71
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s})$	-2.87
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$	-3.04

CHEM1901 - CHEMISTRY 1A (ADVANCED) CHEM1903 - CHEMISTRY 1A (SPECIAL STUDIES PROGRAM)

Useful formulas

Quantum Chemistry	Electrochemistry
$E=h \nu=h c / \lambda$	$\Delta G^{\circ}=-n F E^{\circ}$
$\lambda=h / m v$	Moles of $e^{-}=I t / F$
$E=-Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right)$	$E=E^{\circ}-(R T / n F) \times 2.303 \log Q$
$\Delta x \cdot \Delta(m v) \geq h / 4 \pi$	$=E^{\circ}-(R T / n F) \times \ln Q$
$q=4 \pi r^{2} \times 5.67 \times 10^{-8} \times T^{4}$	$E^{\circ}=(R T / n F) \times 2.303 \log K$
$T \lambda=2.898 \times 10^{6} \mathrm{~K} \mathrm{~nm}$	$=(R T / n F) \times \ln K$
	$E=E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right)$
Acids and Bases	Gas Laws
$\mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00$	$P V=n R T$
$\mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00$	$\left(P+n^{2} a / V^{2}\right)(V-n b)=n R T$
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\}$	$E_{\mathrm{k}}=1 / 2 m V^{2}$
Radioactivity	Kinetics
$t_{1 / 2}=\ln 2 / \lambda$	$t_{1 / 2}=\ln 2 / k$
$A=\lambda N$	$k=A \mathrm{e}^{-E a / R T}$
$\ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t$	$\ln [\mathrm{A}]=\ln [\mathrm{A}]_{0}-k t$
${ }^{14} \mathrm{C}$ age $=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)$ years	$\ln \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
Colligative Properties \& Solutions	Thermodynamics \& Equilibrium
$\Pi=\mathrm{cRT}$	$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
$P_{\text {solution }}=X_{\text {solvent }} \times P^{\circ}{ }_{\text {solvent }}$	$\Delta G=\Delta G^{\circ}+R T \ln Q$
$\mathrm{c}=\mathrm{kp}$	$\Delta G^{\circ}=-R T \ln K$
$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} \mathrm{m}$	$\Delta_{\text {univ }} S^{\circ}=R \ln K$
$\Delta T_{\mathrm{b}}=K_{\mathrm{b}} m$	$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$
Miscellaneous	Mathematics
$A=-\log \frac{I}{I_{0}}$	If $\mathrm{ax}^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$A=\varepsilon c l$	$\ln x=2.303 \log x$
$E=-A \frac{e^{2}}{} N_{\mathrm{A}}$	Area of circle $=\pi r^{2}$
${\overline{4 \pi \varepsilon_{0} r}}^{N}$	Surface area of sphere $=4 \pi r^{2}$

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	$\begin{array}{\|c\|c\|} \hline \text { mexume } \\ \text { Be } \\ 9.012 \end{array}$											$\begin{gathered} 5 \\ \substack{\text { mean } \\ \text { Be } \\ 1081} \end{gathered}$			$\begin{gathered} \substack { \text { conem } \\ \begin{subarray}{c}{0 \\ \hline 16.00{ \text { conem } \\ \begin{subarray} { c } { 0 \\ \hline 1 6 . 0 0 } } \\ {\hline} \end{gathered}$	$\begin{gathered} \substack{\text { nuemes } \\ \text { nes } \\ \hline 19.00} \end{gathered}$	(10 $\substack{\text { mex } \\ \text { Ne } \\ 20.18}$ 18
												$\begin{array}{\|l\|l\|} 13 \\ \text { nuxum } \\ \text { Al } \\ 26989 \end{array}$	$\begin{gathered} 14 \\ \substack{\text { suckux } \\ \text { sin } \\ \text { 28.09 }} \end{gathered}$		$\begin{gathered} 16 \\ \substack{\text { curnan } \\ \text { und } \\ 322.07} \end{gathered}$		
$\begin{gathered} 19 \\ \text { nenem } \\ \text { nen } \\ 39.10 \end{gathered}$	$\begin{array}{\|c} 20 \\ \text { ancum } \\ \text { Ca } \end{array}$	$\begin{array}{\|c} 21 \\ \begin{array}{c} 2 \times 210 u \\ \text { Sc } \\ \text { Sc } \\ 44.96 \end{array} \end{array}$	$\underset{\substack{22 \\ \text { minum } \\ 17 c i}}{\substack{ \\17 c}}$	$\begin{aligned} & \text { ven } \\ & \text { vexum } \\ & \text { s0.94 } \end{aligned}$			$\begin{gathered} 26 \\ \hline \text { weox } \\ \text { cee } \\ 550 \end{gathered}$	$\begin{array}{\|c\|} \hline 27 \\ \text { comer } \\ \text { col } \\ \text { ceon } \end{array}$	$\begin{gathered} 28 \\ \substack{\text { cear } \\ \text { Ni } \\ 58.69} \end{gathered}$	$\begin{gathered} 29 \\ \text { came } \\ \text { can } \end{gathered}$	$\begin{aligned} & 30 \\ & \hline \text { 2nc } \\ & \text { Zn } \\ & 6550 \end{aligned}$	$\begin{gathered} 31 \\ \hline \text { anum } \\ \text { Ga } \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \text { cemen } \\ \text { H2en } \\ 72.59 \end{gathered}$	$\begin{aligned} & 33 \\ & \text { Nesec } \\ & \text { As } \end{aligned}$	$\begin{gathered} 34 \\ \text { sersuer } \\ \text { Se } \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \text { memer } \\ \text { comer } \\ 79990 \end{gathered}$	
$\begin{aligned} & 37 \\ & \text { numur } \\ & \text { Ru } \\ & 85.47 \\ & \hline \end{aligned}$	$\begin{gathered} 38 \\ \substack{30 \times m u m \\ \text { sur } \\ 87.62} \\ 8.0 \end{gathered}$	$\begin{gathered} 39 \\ \text { chumen } \\ \text { che } \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \text { zanoum } \\ \text { zzr } \\ 0102 \end{gathered}$	$\begin{aligned} & \text { ylum } \\ & \text { Nomenn } \\ & \text { Nb } \\ & 92.91 \end{aligned}$			$\begin{gathered} \text { unemu } \\ \text { num } \\ \text { Rum } \\ 101.07 \end{gathered}$	$\begin{aligned} & \text { nemoum } \\ & \text { nenem } \end{aligned}$	$\begin{gathered} 46 \\ \text { mutum } \\ \text { mot } \\ \text { Pd } \\ 106.4 \end{gathered}$	$\begin{array}{\|c\|} \hline 47 \\ \text { Aver } \\ \text { Ag } \end{array}$	$\begin{aligned} & 48 \\ & \text { cenum } \\ & \text { chen } \end{aligned}$		$\begin{gathered} 50 \\ \text { Sn } \\ \text { Sn } \\ 118.69 \end{gathered}$	$\begin{gathered} 51 \\ \substack{\text { Numany } \\ \text { Sb } \\ \text { 121.75 }} \end{gathered}$		$\begin{gathered} 53 \\ \text { chan } \\ \text { I26.90 } \\ 1 \end{gathered}$	
$\begin{array}{\|c\|c} \hline 55 \\ \text { cancus } \\ \text { Cs } \\ 132.91 \end{array}$	$\begin{gathered} 56 \\ \cline { 1 - 3 } \\ \text { seman } \\ \hline \end{gathered}$	57-71	$\begin{gathered} 72 \\ \substack{\text { nenam } \\ \text { Hf } \\ 178.49} \end{gathered}$	$\begin{gathered} 73 \\ \text { nuxum } \\ \text { chan } \\ \hline \end{gathered}$	$\begin{gathered} 74 \\ \text { numw } \\ \text { new } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Nuspur } \\ & \text { nener } \end{aligned}$	$\begin{gathered} 76 \\ \substack{\text { anum } \\ \text { ous } \\ \hline} \end{gathered}$	$\begin{aligned} & \text { numum } \\ & \text { nemer } \\ & \text { Ir } \end{aligned}$ 192.22	$\begin{array}{\|c\|c\|} \hline 78 \\ \text { numur } \\ \text { Put } \\ 195.09 \end{array}$	$\begin{gathered} 79 \\ \text { aun } \\ \text { Aun } \\ 196.97 \end{gathered}$	$\begin{array}{\|c} \hline \text { no } \\ \text { natayer } \\ \text { Hg } \end{array}$	$\begin{gathered} 81 \\ \text { numur } \\ \text { nut } \\ 204.37 \end{gathered}$	$\begin{aligned} & 82 \\ & \hline \text { Run } \\ & \text { Pb } \end{aligned}$	$\begin{gathered} 83 \\ \begin{array}{c} \text { numum } \\ \text { Bim } \\ 208.98 \end{array} \end{gathered}$	$\begin{aligned} & \text { nempen } \\ & \text { mon } \end{aligned}$ [210.0]	$\begin{aligned} & \text { unsme } \\ & \text { uncme } \end{aligned}$ [210.0]	
$\begin{array}{\|c\|c} 88 \\ \text { nuncrer } \\ \text { Fr } \\ {[223.0]} \end{array}$		89-103					$\begin{aligned} & \text { nesum } \\ & \text { nusum } \\ & \text { H265] } \\ & \hline 265 \end{aligned}$			111							

LANTHANOIDS

57 Lanthanom $\mathbf{L a}$ 138.91	$\begin{gathered} 58 \\ \text { севाuм } \\ \text { Ce } \\ 140.12 \end{gathered}$	59 pRaseovmiom $\mathbf{P r}$ 140.91	$\begin{gathered} \text { co } \begin{array}{c} \text { меоммпм } \\ \text { Nd } \\ 144.2 \end{array} \end{gathered}$	61 рвомвниим $\mathbf{P m}$ $[144.9]$ 93	$\begin{gathered} 62 \\ \text { SAMARUM } \\ \text { Sm } \\ 150.4 \end{gathered}$	$\begin{gathered} \begin{array}{c} 63 \\ \text { عuropum } \\ \text { Eu } \\ 151.96 \end{array} \end{gathered}$	$\begin{gathered} \hline 64 \\ \text { сАроимим } \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} \mathbf{6 5} \\ \text { теввим } \\ \mathbf{T b} \\ 158.93 \end{gathered}$	$\begin{gathered} \hline 66 \\ \text { Dxyposum } \\ \text { Dy } \\ 162.50 \end{gathered}$	$\begin{gathered} 67 \\ \text { ноомим } \\ \mathbf{H o} \\ 164.93 \end{gathered}$	$\begin{gathered} \hline 68 \\ \text { عевाuм } \\ \text { Er } \\ 167.26 \end{gathered}$	$\begin{gathered} \hline 69 \\ \text { тнйм } \\ \mathbf{T m} \\ 168.93 \end{gathered}$	$\begin{gathered} 70 \\ \begin{array}{c} 7 \text { чтевним } \\ \mathbf{Y b} \\ 173.04 \end{array} \end{gathered}$	$\begin{gathered} \hline 71 \\ \text { Lогтим } \\ \mathbf{L u} \\ 174.97 \end{gathered}$
$\begin{gathered} \hline 89 \\ \text { Астлим } \\ \mathbf{A c} \\ {[227.0]} \end{gathered}$	$\begin{gathered} 90 \\ \text { 9ноим } \\ \text { Th } \\ 232.04 \end{gathered}$	91 $\left.\begin{array}{c}\text { protacrinuм } \\ \mathbf{P a} \\ {[231.0]}\end{array}\right]$	$\begin{gathered} 92 \\ \substack{\text { URanven } \\ \mathbf{U} \\ 238.03} \end{gathered}$	$\begin{aligned} & 93 \\ & \begin{array}{c} \text { nepunum } \\ \mathbf{N p} \\ {[237.0]} \end{array} \end{aligned}$	$\begin{gathered} 94 \\ \text { putronum } \\ \mathbf{P u} \\ {[239.1]} \end{gathered}$	95 ameractun Am [243.1]	$\begin{gathered} 96 \\ \begin{array}{c} 96 \\ \text { curum } \\ {[247.1]} \end{array} \\ \hline \end{gathered}$	97 $\left.\begin{array}{c}\text { вегкцитм } \\ \mathbf{B k} \\ {[247.1]}\end{array}\right]$	98 $\left.\begin{array}{c}\text { calfornum } \\ \mathbf{C f} \\ {[252.1]}\end{array}\right]$	99 Enstenum Es $[252.1]$	$\begin{gathered} 100 \\ \text { кевитмм } \\ \mathbf{F m} \\ {[257.1]} \end{gathered}$	$\begin{gathered} \hline 101 \\ \text { мерпением } \\ \mathbf{M d} \\ {[256.1]} \end{gathered}$	$\begin{gathered} 102 \\ \text { мовним } \\ \text { No } \\ {[259.1]} \end{gathered}$	$\begin{gathered} 103 \\ \text { Lawnexcum } \\ \mathbf{L r} \\ {[260.1]} \end{gathered}$

